The input and output of most text generation tasks can be transformed to two sequences of tokens and they can be modeled using sequence-to-sequence learning modeling tools such as Transformers. These models are usually trained by maximizing the likelihood the output text sequence and assumes the input sequence and all gold preceding tokens are given during training, while during inference the model suffers from the exposure bias problem (i.e., it only has access to its previously predicted tokens rather gold tokens during beam search). In this paper, we propose MoCa ({\bf Mo}mentum {\bf Ca}libration) for text generation. MoCa is an online method that dynamically generates slowly evolving (but consistent) samples using a momentum moving average generator with beam search and MoCa learns to align its model scores of these samples with their actual qualities. Experiments on four text generation datasets (i.e., CNN/DailyMail, XSum, SAMSum and Gigaword) show MoCa consistently improves strong pre-trained transformers using vanilla fine-tuning and we achieve the state-of-the-art results on CNN/DailyMail and SAMSum datasets.
translated by 谷歌翻译
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to develop deep learning-based single image depth estimation solutions that can show a real-time performance on IoT platforms and smartphones. For this, the participants used a large-scale RGB-to-depth dataset that was collected with the ZED stereo camera capable to generated depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the Raspberry Pi 4 platform, where the developed solutions were able to generate VGA resolution depth maps at up to 27 FPS while achieving high fidelity results. All models developed in the challenge are also compatible with any Android or Linux-based mobile devices, their detailed description is provided in this paper.
translated by 谷歌翻译
旋转速度是要测量的重要指标之一,用于校准制造中的电动机,在汽车维修期间监视发动机,电气设备上的故障等。或在现实世界应用程序方案中使用不便。在本文中,我们提出了通过在移动设备上有效的动态视觉传感的基于事件的转速表。通过将动态视觉传感器作为一种新的传感模式引入动态视觉传感器,将EV-TACH设计为高保真和方便的转速表,以在各种现实世界中精确地捕获高速旋转。通过设计一系列的信号处理算法定制,用于移动设备上的动态视觉感测,EV-TACH能够从旋转目标上的动态视觉传感产生的事件流中准确提取旋转速度。根据我们的广泛评估,EV-TACH的相对平均绝对误差(RMAE)高达0.03%,在固定测量模式下与最先进的激光转速计相当。此外,EV-TACH对于用户手的微妙运动具有鲁棒性,因此可以用作手持设备,在该设备中,激光转速计无法产生合理的结果。
translated by 谷歌翻译
最近,已经提出了许多有效的变压器,以降低由软磁性注意引起的标准变压器的二次计算复杂性。但是,他们中的大多数只是用有效的注意机制交换SoftMax,而无需考虑定制的体系结构,特别是为了有效的关注。在本文中,我们认为手工制作的香草变压器体系结构可用于软马克斯的注意力可能不适合有效的变压器。为了解决这个问题,我们提出了一个新框架,通过神经体系结构搜索(NAS)技术找到有效变压器的最佳体系结构。提出的方法在流行的机器翻译和图像分类任务上进行了验证。我们观察到,与标准变压器相比,有效变压器的最佳体系结构的计算降低,但总体准确性较低。这表明SoftMax的注意力和有效的注意力具有自己的区别,但它们都无法同时平衡准确性和效率。这激发了我们混合两种注意力以减少性能失衡。除了现有NAS变压器方法中常用的搜索空间外,我们还提出了一个新的搜索空间,该空间允许NAS算法与架构一起自动搜索注意变体。 WMT'EN-DE和CIFAR-10上的广泛实验表明,我们的搜索架构与标准变压器保持了可比的精度,并具有明显提高的计算效率。
translated by 谷歌翻译
对看不见的环境变化的深入强化学习的概括通常需要对大量各种培训变化进行政策学习。我们从经验上观察到,接受过许多变化的代理商(通才)倾向于在一开始就更快地学习,但是长期以来其最佳水平的性能高原。相比之下,只接受一些变体培训的代理商(专家)通常可以在有限的计算预算下获得高回报。为了两全其美,我们提出了一个新颖的通才特权训练框架。具体来说,我们首先培训一名通才的所有环境变化。当它无法改善时,我们会推出大量的专家,并从通才克隆过重量,每个人都接受了训练,以掌握选定的一小部分变化子集。我们终于通过所有专家的示范引起的辅助奖励恢复了通才的培训。特别是,我们调查了开始专业培训的时机,并在专家的帮助下比较策略以学习通才。我们表明,该框架将政策学习的信封推向了包括Procgen,Meta-World和Maniskill在内的几个具有挑战性和流行的基准。
translated by 谷歌翻译
这项工作研究了彩色的任务,其中目的是将聋人(听力态度)社区转录到聋人的自然口语句子,以命令手语界面。以配对句子 - 光泽数据培训的先前序列到序列语言模型通常无法捕获两个不同语言之间的丰富连接,从而导致不满意的转录。我们观察到,尽管语法不同,但有效地简化了聋人通信的句子,同时与句子分享大部分词汇。这使我们能够通过执行编辑动作的集合来实现有乐化性的。单词添加,删除和复制,称为编辑程序,在他们的自然语言同行上。具体而言,我们设计了一种新的神经代理,了解综合和执行编辑程序,在句子上下文和部分编辑结果上调节的编辑程序。经过培训的代理以模仿最小的编辑程序,同时通过策略梯度更广泛地探索节目空间,以优化序列明智的转录质量。结果表明,我们的方法优于先前的光泽模型。
translated by 谷歌翻译
弱监督的语义分割(WSSS)是具有挑战性的,特别是当使用图像级标签来监督像素级预测时。为了弥合它们的差距,通常生成一个类激活图(CAM)以提供像素级伪标签。卷积神经网络中的凸轮患有部分激活,即,仅激活最多的识别区域。另一方面,基于变压器的方法在探索具有长范围依赖性建模的全球背景下,非常有效,可能会减轻“部分激活”问题。在本文中,我们提出了基于第一变压器的WSSS方法,并介绍了梯度加权元素明智的变压器注意图(GetAn)。 GetaN显示所有特征映射元素的精确激活,跨越变压器层显示对象的不同部分。此外,我们提出了一种激活感知标签完成模块来生成高质量的伪标签。最后,我们将我们的方法纳入了使用双向向上传播的WSS的结束框架。 Pascal VOC和Coco的广泛实验表明,我们的结果通过显着的保证金击败了最先进的端到端方法,并且优于大多数多级方法.M大多数多级方法。
translated by 谷歌翻译
With an ever-growing number of parameters defining increasingly complex networks, Deep Learning has led to several breakthroughs surpassing human performance. As a result, data movement for these millions of model parameters causes a growing imbalance known as the memory wall. Neuromorphic computing is an emerging paradigm that confronts this imbalance by performing computations directly in analog memories. On the software side, the sequential Backpropagation algorithm prevents efficient parallelization and thus fast convergence. A novel method, Direct Feedback Alignment, resolves inherent layer dependencies by directly passing the error from the output to each layer. At the intersection of hardware/software co-design, there is a demand for developing algorithms that are tolerable to hardware nonidealities. Therefore, this work explores the interrelationship of implementing bio-plausible learning in-situ on neuromorphic hardware, emphasizing energy, area, and latency constraints. Using the benchmarking framework DNN+NeuroSim, we investigate the impact of hardware nonidealities and quantization on algorithm performance, as well as how network topologies and algorithm-level design choices can scale latency, energy and area consumption of a chip. To the best of our knowledge, this work is the first to compare the impact of different learning algorithms on Compute-In-Memory-based hardware and vice versa. The best results achieved for accuracy remain Backpropagation-based, notably when facing hardware imperfections. Direct Feedback Alignment, on the other hand, allows for significant speedup due to parallelization, reducing training time by a factor approaching N for N-layered networks.
translated by 谷歌翻译
The interaction and dimension of points are two important axes in designing point operators to serve hierarchical 3D models. Yet, these two axes are heterogeneous and challenging to fully explore. Existing works craft point operator under a single axis and reuse the crafted operator in all parts of 3D models. This overlooks the opportunity to better combine point interactions and dimensions by exploiting varying geometry/density of 3D point clouds. In this work, we establish PIDS, a novel paradigm to jointly explore point interactions and point dimensions to serve semantic segmentation on point cloud data. We establish a large search space to jointly consider versatile point interactions and point dimensions. This supports point operators with various geometry/density considerations. The enlarged search space with heterogeneous search components calls for a better ranking of candidate models. To achieve this, we improve the search space exploration by leveraging predictor-based Neural Architecture Search (NAS), and enhance the quality of prediction by assigning unique encoding to heterogeneous search components based on their priors. We thoroughly evaluate the networks crafted by PIDS on two semantic segmentation benchmarks, showing ~1% mIOU improvement on SemanticKITTI and S3DIS over state-of-the-art 3D models.
translated by 谷歌翻译
Multi-agent artificial intelligence research promises a path to develop intelligent technologies that are more human-like and more human-compatible than those produced by "solipsistic" approaches, which do not consider interactions between agents. Melting Pot is a research tool developed to facilitate work on multi-agent artificial intelligence, and provides an evaluation protocol that measures generalization to novel social partners in a set of canonical test scenarios. Each scenario pairs a physical environment (a "substrate") with a reference set of co-players (a "background population"), to create a social situation with substantial interdependence between the individuals involved. For instance, some scenarios were inspired by institutional-economics-based accounts of natural resource management and public-good-provision dilemmas. Others were inspired by considerations from evolutionary biology, game theory, and artificial life. Melting Pot aims to cover a maximally diverse set of interdependencies and incentives. It includes the commonly-studied extreme cases of perfectly-competitive (zero-sum) motivations and perfectly-cooperative (shared-reward) motivations, but does not stop with them. As in real-life, a clear majority of scenarios in Melting Pot have mixed incentives. They are neither purely competitive nor purely cooperative and thus demand successful agents be able to navigate the resulting ambiguity. Here we describe Melting Pot 2.0, which revises and expands on Melting Pot. We also introduce support for scenarios with asymmetric roles, and explain how to integrate them into the evaluation protocol. This report also contains: (1) details of all substrates and scenarios; (2) a complete description of all baseline algorithms and results. Our intention is for it to serve as a reference for researchers using Melting Pot 2.0.
translated by 谷歌翻译